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Abstract—Polytopic matrix factorization (PMF) decomposes
a given matrix as the product of two factors where the rows
of the first factor belong to a given convex polytope and the
columns of the second factor belong to another given convex
polytope. In this paper we show that if the polytopes have certain
invariant properties, and that if the rows of the first factor
and the columns of the second factor are sufficiently scattered
within their corresponding polytope, then this PMF is identifiable,
that is, the factors are unique up to a signed permutation.
The PMF framework is quite general, as it recovers other
known structured matrix factorization models, and is highly
customizable depending on the application. Hence, our result
provides sufficient conditions that guarantee the identifiability of
a large class of structured matrix factorization models.

Index Terms—identifiability, polytopic matrix factorization,
nonnegative matrix factorization

I. INTRODUCTION

Low-rank matrix approximations allow one to obtain com-
pressed representations of data while extracting automatically
important features. Let X ∈ Rm×n be a data matrix where
each column is a data point, a standard low-rank matrix
approximation decomposes X as follows: X ≈ WH where
W ∈ Rm×r, H ∈ Rr×n, and r < min(m,n) is the
factorization rank. If we interpret the columns of W as a
set of basis elements, then the matrix H contains the weights
necessary to reconstruct the columns of X through linear com-
binations of these basis elements. This simple, yet powerful,
data representation technique is applied in many domains,
e.g., facial feature extraction [1], document clustering [2],
blind source separation [3], [4], community detection [5],
gene expression analysis [6], and recommender systems [7].
Depending on the application and the goal at hand (e.g.,
clustering, denoising, feature extraction), one may impose
different structures/constraints on the factors W and/or H .

For example, nonnegative matrix factorization (NMF) [1]
requires every element of the two factors W and H to be
nonnegative. In hyperspectral unmixing (HU), the data would
be a vectorized hyperspectral cube: each column of X repre-
sents a pixel, and each row of X represents a spectral band.
Since the sensed reflectance is nonnegative, it is meaningful
to impose the extracted basis elements to be also nonnegative.
Likewise, it is physically meaningful to impose the mixtures of
these basis elements in a pixel to be nonnegative since linear
combinations of spectral signatures should only be additive.
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Hence, NMF is quite relevant when it comes to HU to recover
the underlying spectral signatures and the abundances of the
materials in each pixel [3].

In many applications, it is important that the factorization is
essentially unique, such as for HU since the goal is to find the
true materials present in the hyperspectral image. For example,
essential uniqueness for NMF, also known as identifiability, is
achieved when given an NMF (W,H) of X = WH , the only
matrices W̃ ∈ Rm×r

+ and H̃ ∈ Rr×n
+ such that X = W̃ H̃

are of the form W̃ = WDΠ and H̃ = Π⊤D−1H , where Π
is a permutation matrix and D is a diagonal matrix whose
diagonal is strictly positive. NMF is not essentially unique in
general. However, it has been proven to be identifiable under
the sufficiently scattered conditions (SSC):

Definition 1 (SSC). The matrix H ∈ Rr×n
+ is sufficiently

scattered if the following two conditions are satisfied:

[SSC1] C = {x ∈ Rr
+ | e⊤x ≥

√
r − 1∥x∥2} ⊆ cone(H).

[SSC2] There does not exist any orthogonal matrix Q such
that cone(H) ⊆ cone(Q), except for permutation matrices.

Theorem 1. [8, Th. 4] If W⊤ ∈ Rr×m
+ and H ∈ Rr×n

+ are
sufficiently scattered then the NMF (W,H) of X = WH is
essentially unique.

A geometric interpretation of these sufficient conditions is
the following: while making sure that X = WH and that W
is nonnegative, it is not possible to decrease the “volume” of
the cone of W⊤ without making the cone of H get out of the
nonnegative orthant, and vice versa; see Section IV for details.

In this paper, we focus on the identifiability of polytopic
matrix factorization (PMF). With NMF, the feasible domain
is the nonnegative orthant. With PMF, the feasible domains
are convex polytopes: the columns of W⊤ and H belong
to the polytopes PW and PH , respectively. A variant of
PMF has already been studied in [9], [10] where the authors
proposed a structured matrix factorization where: (i) the matrix
W is unconstrained, (ii) the columns of H belong to a
convex polytope, and (iii) the goal is to find a factorization
maximizing the volume of the convex hull of the columns of
H . This model, proposed in [9], [10], is also referred to as
PMF, although it would have been more appropriate to refer
to it as maximum-volume PMF. In fact, their proposed model
could be viewed as a polytopic variant of minimum-volume
semi-NMF [2], while our proposed model would rather be a
polytopic variant of NMF.



Contribution and outline. Inspired by the identifiability condi-
tions in [9] and similarly to Theorem 1, our main contribution
in this paper is to show that if the convex hull of W⊤ and H
are sufficiently scattered within their respective polytope, then
the corresponding PMF is identifiable (Theorem 2).

In Section II we introduce PMF. Section III provides im-
portant definitions and properties. In Section IV we prove
our main result. Section V presents known structured matrix
factorization that are special cases of PMF, and how our
theoretical finding relates to previous results.

II. POLYTOPIC MATRIX FACTORIZATION

In this paper, we consider convex polytopes, that is, bounded
polyhedra. A convex polytope P can always be expressed in
V-form, through a convex combination of its vertices:

P = conv(V ) = {x | x = V h, h ≥ 0,
∑
i

hi = 1}, (1)

where the columns of V are the vertices, or the extremum
points, of P . We can now define PMF. Given a data matrix
X ∈ Rm×n and r, PMF computes W and H such that

X = WH s.t. W (i, :) ∈ PW for all i ∈ 1, . . . ,m,

H(:, j) ∈ PH for all j ∈ 1, . . . , n,
(2)

where W ∈ Rm×r is the basis matrix, H ∈ Rr×n is the
coefficient matrix, PW and PH are convex polytopes that
respectively constrain the rows of W and the columns of H .
This PMF is referred to as the quadruple (W,H,PW ,PH).
This framework is quite general: it offers infinite varieties
of structured matrix factorizations that promote different be-
haviors in the latent space, depending on the choice of PW

and PH . As we will show in Section V, PMF recovers
factorizations that have been been studied in the literature.

III. NOTATION, DEFINITIONS AND PROPERTIES

In this section, we give our notation, and provide important
definitions and properties that are needed to achieve our main
result on the identifiability of PMF (Theorem 2 in Section IV).
Notation. Here is some of our notation:

e vector of all ones of appropriate dimension
X ∗,g polar of the set X ⊂ Rr with respect to g, that

is, {x ∈ Rr|⟨x, y − g⟩ ≥ 0, for all y ∈ X}
∆r probability simplex {x ∈ Rr|x ≥ 0, e⊤x = 1}
A−⊤ inverse of the transpose of the square matrix A
cone(A) conical hull of the columns of A
conv(A) convex hull of the columns of A
ext(X ) set of extreme points of the set X
bd(X ) boundary of the set X

Identifiability. Let us clarify what is meant by identifiability.
A PMF (W,H,PW ,PH) is identifiable if for any other PMF
(W∗, H∗,PW ,PH) of X , there exist a permutation matrix Π
and a diagonal matrix D with diagonal values in {−1, 1} such
that W∗ = WΠ⊤D−1 and H∗ = DΠH . We will refer to a
matrix of the form DΠ as a signed permutation. As opposed to
NMF, essential uniqueness of PMF is stronger as it only allows
a sign ambiguity, while NMF allows a scaling ambiguity.

Minimum-volume ellipsoid and sufficient scatteredness. Our
sufficient scatteredness conditions that guarantee identifiability
heavily rely on the notion of ellipsoids. Given a center, x ∈ Rr,
and a positive definite matrix E, an ellipsoid is defined as
E(E, x) :=

{
x ∈ Rr|(x− x)⊤E(x− x) ≤ r

}
. Its volume is

given by vol(E(E, x)) = rr/2Ωr√
det(E)

where Ωr is the volume

of a ball of radius 1 in Rr. The axis of the ellipsoid are
given by the eigenvectors of E, and their length is inversely
proportional to the square root of corresponding eigenvalues;
see, e.g., [11]. Given an ellipsoid E(E, x) and an invertible
matrix Q, it can be shown that Q(E(E, x)) = {Qx|x ∈ E} =
E(Q−⊤EQ−1, y) where y = Qx, and hence the volume of QE
equals the volume of E times |det(Q)|. This will be useful in
our identifiability proof.

The MVIE of a polytope P , denoted EP , is defined as the
ellipsoid EP ⊂ P with maximum volume vol(E(E, x)), that is,
for which det(E) is maximized. It can be computed by solving
a convex semidefinite program; see, e.g., [12, Chap. 8.4.2].
A convex set is said to be sufficiently scattered relative to a
polytope when it is contained in that polytope while containing
the MVIE of this polytope [9].

Our identifiability result will be based on the following
sufficient scatteredness condition:

Definition 2 (Sufficiently Scattered Factor [9]). The matrix
H ∈ Rr×n is called a sufficiently scattered factor (SSF)
corresponding to P if

[PMF.SSC1] P ⊇ conv(H) ⊃ EP , and

[PMF.SSC2] conv(H)∗,gP ∩ bd(E∗,gP
P ) = ext(P∗,gP ),

where EP is the MVIE of P centered at gP .

The idea behind the condition [PMF.SSC1] is similar to
[SSC1] in Theorem 1, as both conditions ensure that the
considered factor is sufficiently scattered within its feasible
set. The MVIE acts like the second order cone C in [SSC1]
which is the largest cone contained in the nonnegative orthant.
Here, [PMF.SSC1] ensures that the convex hull of a factor H
is contained in the polytope P and contains the MVIE of P .
The second condition [PMF.SSC2] makes sure that the MVIE
is not contained too tightly. Let us illustrate why [PMF.SSC2]
is important with the PMF (H⊤, H,∆3,∆3) using Example 3
from [13], see also [8, Example 2]:

H =
1

3

1 2 2 1 0 0
2 1 0 0 1 2
0 0 1 2 2 1

 . (3)

As it can be seen on fig. 1a, H satisfies [PMF.SSC1]. How-
ever, fig. 1b exposes why H does not satisfy [PMF.SSC2] and
it turns out that the PMF (H⊤, H,∆3,∆3) is not identifiable:

Q =
1

3

−1 2 2
2 −1 2
2 2 −1


provides another PMF, (H⊤Q⊤, QH,∆3,∆3), while QH is
not a signed permutation of the rows of H .



bd(∆3)
H

conv(H)
E∆3

(a) Visualization of why H satis-
fies [PMF.SSC1].

bd(∆3∗,g)

ext(conv(H)∗,g)

conv(H)∗,g

bd(E∗,g
∆3 )

(b) Visualization of why H does
not satisfy [PMF.SSC2].

Fig. 1: A small example, with H from eq. (3) and
g =

(
1/3 1/3 1/3

)⊤
, showing how [PMF.SSC1] can be

satisfied without [PMF.SSC2] being satisfied.

Permutation-and/or-sign-only invariant sets. In addition to the
sufficient scatteredness, the identifiability of PMF will rely on
the following condition for the sets of vertices of PW and PH .

Definition 3. A set X is called a permutation-and/or-sign-only
invariant (PSOI) set if, and only if, every linear transformation
A such that A(X ) = X is a signed permutation, that is,
A = DΠ where Π is a permutation matrix and D is a diagonal
matrix with diagonal entries in {−1, 1}.

The set of vertices of full-dimensional polytopes will in
most cases be PSOI sets.

Lemma 1. Let the columns of V ∈ Rr×n contain the vertices
of the polytope V ⊂ Rr and such that rank(V ) = r (this
holds for full-dimensional polytopes). Let A ∈ Rr×r be such
that AV = V (:,Π) for some permutation Π. Then A is an
orthogonal matrix, that is, a rotation of Rr.

Proof. Since A permutes the columns of V , and the set of
permutations is finite, there exists n such that AnV = V .
Since V has rank r, it admits a right inverse, so that An = Ir,
where Ir is identity matrix of dimension r. This implies that
the eigenvalues of A are roots of 1, and hence A is orthogonal,
that is, A⊤A = Ir.

In two dimensions, sets that are not PSOI are any regular
polygon centered at the origin, except for the square (which
is obtained by a rotation of 90 or 180 degrees in which case
A is a signed permutation). For example, the vertices of the
regular triangle given by the columns of

V =

(
0

√
3/2 −

√
3/2

1 −1/2 −1/2

)
are preserved by a rotation of 120 degrees, corresponding to

A =

(
−1/2

√
3/2

−
√
3/2 −1/2

)
, and AV =

(√
3/2 −

√
3/2 0

−1/2 1/2 1

)
.

In Section V, we will use two polytopes: ∆r and [a, b]r

for b > a. Let us show that their vertices are PSOI sets.

For ∆r, this is trivial since ∆r = conv(Ir), hence any A
that satisfies AIr = Ir(:,Π) for some permutation Π must
be a permutation (note there is no sign ambiguity possible
here). For the hypercube [a, b]r, let us first prove the following
lemma.

Lemma 2. Let a < b be scalars, and d ∈ Rr with ∥d∥2 = 1
be such that d⊤x ∈ {a, b} for all x ∈ {a, b}r. Then d is a
unit vector, up to multiplication by -1.

Proof. Let us prove the result by induction. For r = 1, the
result is trivial, we must have d = 1. Assume the result holds
for all r′ < r, and let us denote d = [dr−1, dr] with dr−1 ∈
Rr−1, and similarly for x. We have for all x ∈ {a, b}r that

d⊤x = d⊤r−1xr−1 + drxr ∈ {a, b}.
If dr ∈ {−1, 0, 1}, the result follows by induction since
∥d∥2 = 1. Hence assume dr /∈ {−1, 0, 1}. We have

d⊤r−1xr−1 + dra ∈ {a, b} and d⊤r−1xr−1 + drb ∈ {a, b}.
Let us denote α = d⊤r−1xr−1, we have

α ∈ {a− dra, b− dra} and α ∈ {a− drb, b− drb}.
Since a ̸= b, a−dra ̸= a−drb and b−dra ̸= b−drb as dr ̸= 0,
a−dra ̸= b−drb as dr ̸= 1, and b−dra ̸= b−drb as dr ̸= −1.
Hence α cannot exist for xr ∈ {a, b}, a contradiction.

Corollary 1. The set of vertices of [a, b]r is a PSOI set.

Proof. The set of vertices of [a, b]r are all vectors in {a, b}r.
Let the columns of V ∈ Rr×2r contain the vertices of [a, b]r,
and the linear transformation A satisfy AV = V (:,Π) for
some permutation Π. By Lemma 1, A is orthogonal hence
its rows have unit ℓ2 norm. This implies that every row of
A must satisfy the condition of Lemma 2 and hence are unit
vectors. Since rows of A are orthogonal, A must be a signed
permutation.

IV. IDENTIFIABILITY

We can now state our main result: it fills a gap in the
literature by combining the ideas of the identifiability of
maximum-volume PMF in [9], and of NMF in [8].

Theorem 2. Let (W,H,PW ,PH) be a PMF of X of size
r = rank(X). If W⊤ and H are SSFs, and ext(PW ) and
ext(PH) are PSOI sets, then the PMF (W,H,PW ,PH) of
X = WH of size r = rank(X) is identifiable.

Proof. This proof follows that from [9, Th. 6] where only
H is required to be sufficiently scattered while its volume is
maximized. Let Q ∈ Rr×r be an invertible matrix such that
(WQ−1, QH) is a PMF of X with

conv(Q−⊤W⊤) ⊆ PW and conv(QH) ⊆ PH . (4)

Since W⊤ and H are sufficiently scattered factors, their
convex hull contains their corresponding MVIE:

EPW
⊂ conv(W⊤) and EPH

⊂ conv(H). (5)

Then, eq. (4) leads to

Q−⊤(EPW
) ⊆ PW and Q(EPH

) ⊆ PH . (6)



The set Q−⊤(EPW
) (resp. Q(EPH

)) is still an ellipsoid of
volume |det(Q−1)| vol(EPW

) (resp. |det(Q)| vol(EPH
)). By

definition of the MVIE, we have

|det(Q−1)| vol(EPW
) ≤ vol(EPW

)

and |det(Q)| vol(EPH
) ≤ vol(EPH

)

⇔|det(Q−1)| ≤ 1 and |det(Q)| ≤ 1 ⇔ |det(Q)| = 1.

This implies that Q−⊤ and Q respectively map EPW
and EPH

onto themselves :

Q−⊤(EPW
) = EPW

and Q(EPH
) = EPH

. (7)

The remaining of the proof is exactly like in the remaining
proof of [9, Th. 6] by focusing on either H or W⊤. Focus on
H for example, and using [PMF.SSC2], the idea is to show
that Q(ext(PH)) = ext(PH). Then, because ext(PH) is a
PSOI set, Q has to be a signed permutation.

The last part of the proof of Theorem 2 does not rely on both
W⊤ and H satisfying [PMF.SSC2], and on both ext(PW ) and
ext(PH) being PSOI sets. Actually, Theorem 2 remains valid
if only one the factors satisfies [PMF.SSC2] and if the vertices
of its corresponding polytope form a PSOI set.

Corollary 2. Let W⊤ and H satisfy [PMF.SSC1] and
(i) W⊤ satisfy [PMF.SSC2] and ext(PW ) be a PSOI set,

or
(ii) H satisfy [PMF.SSC2] and ext(PH) be a PSOI set,

then the PMF (W,H,PW ,PH) of X = WH of size r =
rank(X) is identifiable.

Proof. The same proof as Theorem 2 applies. By symmetry,
whether it is (i) or (ii) that is verified allows us to conclude
that Q is a signed permutation.

The PSOI set condition can be relaxed to sets that are “mu-
tually” PSOI, that is, there cannot exist a matrix A which is not
a signed permutation such that A−⊤(ext(PW )) = ext(PW )
and A(ext(PH)) = ext(PH).

Corollary 3. Let (W,H,PW ,PH) be a PMF of X of size r =
rank(X). If W⊤ and H are SSFs, and ext(PW ) and ext(PH)
are mutually PSOI sets, then the PMF (W,H,PW ,PH) of
X = WH of size r = rank(X) is identifiable.

Proof. The same proof as Theorem 2 applies up to eq. (7).
Then, W⊤ and H satisfying [PMF.SSC2] leads to
Q−⊤(ext(EPW

)) = ext(EPW
) and Q(ext(EPH

)) =
ext(EPH

). Then, because ext(PW ) and ext(PH) are mutually
PSOI sets, Q has to be a signed permutation.

V. EXAMPLES OF PMF

In this section, we show that some known constrained
matrix factorizations are special instances of PMF, and explain
how Theorem 2 relates to known identifiability results for these
special cases.

A. Nonnegative Matrix Factorization (NMF)

An NMF, X = WH , requires W and H to be component-
wise nonnegative. This is not a PMF since the nonnegative
orthant is unbounded. However, if W⊤ and H do not contain
a column full of zeros (which can be assumed w.l.o.g.), then
there exist two diagonal matrices, Dl and Dr, such that
DlWe = e and e⊤HDr = e⊤. Hence we can transform the
NMF X = WH into the PMF (W̃ , H̃,∆r,∆r) of X̃ with
X̃ = DlXDr, where W̃ = DlW and H̃ = HDr.

Interestingly, the identifiability conditions for NMF in The-
orem 1 and for PMF in Theorem 2 are equivalent, because H̃
satisfies the SSC in Def. 1 if and only if H̃ is an SSF according
to Def. 2, while ext(∆r) is a PSOI set (see Section III). This
is due to the fact that EPW

= EPH
= C ∩∆r, since the MVIE

of ∆r is an (r− 1)-dimensional ball centered at 1
r e of radius

1√
r(r−1)

, within the affine subspace {x ∈ Rr, e⊤x = 1}.

Indeed, the diagonal matrices are just rescaling the rows of W
and the columns of H such that they belong to ∆r. Hence,
C ∩ ∆r ⊆ conv(H̃) if and only if C ⊆ cone(H), and by
symmetry this also holds for W̃⊤ and W⊤.

B. Factor-Bounded Matrix Factorization

Factor-bounded matrix factorization (FBMF) requires the
elements of each factor to be bounded. Given a < b ∈ R, we
write a ≤ W ≤ b if a ≤ W (i, k) ≤ b for all (i, k).

Definition 4 (Factor-Bounded MF). Let X ∈ Rm×n, r be
an integer, lW < uW ∈ R and lH < uH ∈ R. The pair
(W,H) ∈ Rm×r × Rr×n is a FBMF of X of size r for the
intervals [lW , uW ] and [lH , uH ] if

X = WH such that lW ≤ W ≤ uW , lH ≤ H ≤ uH . (8)

This means that each row of W then belongs to the
hypercube [lW , uW ]r and each column of H belongs to the hy-
percube [lH , uH ]r. In [14], the authors propose a nonnegative
FBMF (NFBMF), where 0 ≤ lW and 0 ≤ lH in eq. (8). They
showed that NFBMF is particularly well suited for clustering
tasks. To the best of our knowledge, FBMF has never been
proven to be identifiable. Since eq. (8) is a PMF with the
choice PW = [lW , uW ]r and PH = [lH , uH ]r, Theorem 2
applies to FBMF. The MVIE EPW

is an r-dimensional ball
centered at uW+2lW

2 e of radius uW−lW
2 , and similarly for EPH

,
while ext(PW ) and ext(PH) are PSOI sets (Corollary 1).

C. Bounded Simplex-Structured Matrix Factorization

Bounded simplex-structured matrix factorization (BSSMF)
was introduced in [15] to explain data that are convex com-
binations of vectors belonging to a hyper-rectangle. Given
the vectors a ≤ b ∈ Rm, we write W (:, k) ∈ [a, b] if
ai ≤ W (i, k) ≤ bi for all i.

Definition 5 (BSSMF). Let X ∈ Rm×n, r be an integer, and
a, b ∈ Rm with a ≤ b. The pair (W,H) ∈ Rm×r ×Rr×n is a
BSSMF of X of size r for the interval [a, b] if

X = WH s.t. W (:, k) ∈ [a, b] and H(:, j) ∈ ∆r for all k, j.
(9)



BSSMF does not belong to the class of PMFs. The hyper-
rectangle constraint on the columns of W cannot in general
be expressed as a polytopic constraint on the rows of W .
However, when all entries of a, and of b, are equal to one
another, the hyperrectangle constraint becomes a hypercube
constraint. For example, when X corresponds to a set of
vectorized images, the intensity of a pixel belongs to [0, 1].
If there is no specific pixel position that should be bounded
differently than the others, every row of W is bounded in
the same way. In other words, the rows of W belong to the
hypercube [0, 1]r. Another example is when X is a rating
matrix whose entries are ordinal, e.g., the Netflix matrix with
entries in {1, 2, 3, 4, 5} ∈ [1, 5]. In these cases, BSSMF uses
a hypercube [a, b]m and is equivalent to PMF since eq. (9) is
equivalent to eq. (2) with PW = [a, b]r and PH = ∆r. BSSMF
was shown to be identifiable under the following conditions,
different than in Theorem 2:

Theorem 3. [15, Th. 2] Let a ≤ b ∈ Rm, W ∈ Rm×r and
H ∈ Rr×n be such that W (:, k) ∈ [a, b] for all k, H(:, j) ∈
∆r for all j. If

(
W−ae⊤

be⊤−W

)⊤
∈ Rr×2m and H ∈ Rr×n satisfy

the SSC, then this BSSMF is essentially unique.

When BSSMF and PMF are equivalent, which identifiability
theorem is the strongest? Since BSSMF is invariant by transla-
tion along e, we can assume w.l.o.g. that a = 0 for the sake of
simplicity. Also, we do not need to focus on the conditions for
H . Indeed, when H(:, j) ∈ ∆r for all j, [SSC1] is equivalent
to [PMF.SSC1] because the MVIE of PH = ∆r is equal to
C ∩∆r. We then focus on the sufficient scatteredness of W⊤.
The MVIE of [0, b]r is a ball E[0,b]r centered at b

2e of radius b
2 .

This ball is tightly contained by C, which means that for any
convex set A that contains E[0,b]r , C ⊆ cone(A). As a con-
sequence, if W⊤ satisfies [PMF.SSC1], W⊤ satisfies [SSC1],
which implies that

(
W

be⊤−W

)⊤
satisfies [SSC1]. However, it is

possible that
(

W
be⊤−W

)⊤
satisfies [SSC1] while W⊤ does not

satisfy [PMF.SSC1]. Here is an example with PW = [0, 1]3:

W⊤ =

0.8 0 0.2 0.2 0.8 1
0.2 0.8 0 1 0.2 0.8
0 0.2 0.8 0.8 1 0.2

 . (10)

As it can be seen in fig. 2a, the cone of
(

W
1−W

)⊤
contains C

because W reaches enough times the minimum and maximum
bounds 0 and 1. However, in Figure 2b the convex hull of W⊤

does not contain the MVIE of [0, 1]3. Therefore, Theorem 2 is
quite general but is not as strong as Theorem 3 for BSSMF.

VI. CONCLUSION

We presented PMF, a structured matrix factorization model
where the latent space of the factors is constrained by given
polytopes. The choice of the polytopes should depend on the
data and the application at hand. When the polytopes have
certain invariant properties, we derived some sufficient condi-
tions under which the identifiability of a PMF is guaranteed.
Geometrically, these conditions are based on the scatteredness
of the factors within the constraining polytopes.

bd(∆3)(
W

1−W

)⊤
cone

((
W

1−W

)⊤) ∩∆3

C ∩∆3

(a) Visualization of [SSC1] being
satisfied.

bd(∆3) W⊤

conv(W⊤) bd(E[0,1]3)
bd([0, 1]3)

(b) Visualization of [PMF.SSC1]
not being satisfied.

Fig. 2: Visualization of
(

W
1−W

)⊤
from eq. (10) satisfying

[SSC1] while W⊤ does not satisfy [PMF.SSC1]. The cone
of

(
W

1−W

)⊤
contains C, while the convex hull of W⊤ does not

contain the ball E[0,1]3 .
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